SNF472 – a potential novel calcification inhibitor in CKD-MBD

Ayshe Hyusein1, Brandenburg Vincent2, Miguel Ferrer3, Ana Z. Canals3, Carolina Salcedo3, Joan Perelló3, Jürgen Floege1, Nadine Kaesler1

1University Hospital RWTH Aachen, Dept Nephrology, Aachen, GERMANY, 2University Hospital RWTH Aachen, Dept Cardiology, Aachen, GERMANY, 3Laboratoris Sanifit SL, Research and Development Dept, Palma de Mallorca, SPAIN

53rd ERA-EDTA Congress, Vienna
May 23rd, 2016
Chronic Kidney Disease – Mineral Bone Disorder

Vascular calcification in CKD-MBD:

Loss of inhibitors
↓MGP
↓Ppi
↓OPN

Matrix vesicle release

Fetuin-A uptake

ECM modification and degradation

Lineage reprogramming
↑Runx2
↑ALP
↓SM22

Apoptosis

ECM Mineralization

©Shanahan et al. American Heart Association, Inc. 2011
What is SNF472?

• Main component: myo-inositol hexaphosphate (IP6, phytate)
 • Natural nutritional ingredient
 • Potent modulator of calcification

• SNF472:
 • Modified IP6 salt, i.v. formulation
 • Being developed for:
 - Reducing of cardiovascular calcification in dialysis patients
 - Treatment of calciphylaxis

Methods: VSMC culture

- **VSMCs from rat aorta**
- **Cell culture**
 - Standard medium: DMEM / F12 + 10% FCS
- **Calcifying cells**
 - Pro-calcific medium: DMEM / F12 + 10% FCS + 3mM Ca and PO₄

Treatment of calcifying VSMCs with:
- SNF472
- STS

Steps:
1. Cell culture
2. Calcifying cells
3. TUNEL staining
4. Ca-assay
SNF472: Most Effective Dose Finding

<table>
<thead>
<tr>
<th></th>
<th>5 days</th>
<th>Ca-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaPO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaPO + SNF472 1μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaPO + SNF472 10μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaPO + SNF472 30μM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaPO + SNF472 100μM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SNF472 vs STS: Most Effective Dose Finding

<table>
<thead>
<tr>
<th>Control</th>
<th>CaPO</th>
<th>CaPO + SNF472 1μM</th>
<th>CaPO + SNF472 10μM</th>
<th>CaPO + SNF472 30μM</th>
<th>CaPO + SNF472 100μM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>CaPO</th>
<th>CaPO + STS 25mM</th>
<th>CaPO + STS 50mM</th>
<th>CaPO + STS 100mM</th>
</tr>
</thead>
</table>

5 days Ca-Assay
SNF472 vs STS: Most Effective Dose Finding

Calcium levels after 5 days SNF472 treatment

Calcium levels after 5 days STS treatment
STS472 vs STS:
apoptosis rate after 7 days of treatment
Time dependency of SNF472 treatment

- Control
- CaPO
- CaPO + Ca+SNF
- CaPO + CaPO+SNF472
- CaPO + SNF472

0 3 5 7 10 days

Ca-assay
Time dependency of SNF472 treatment
Conclusions:

<table>
<thead>
<tr>
<th>SNF472:</th>
<th>STS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Reduces in vitro calcium deposition of rodent VSMCs in a pro-calcific milieu</td>
<td>- Also reduces in vitro calcium deposition of rodent VSMCs in a pro-calcific milieu</td>
</tr>
<tr>
<td>- No significant increase of apoptosis (0.8%)</td>
<td>- Very high levels of apoptosis (77%)</td>
</tr>
</tbody>
</table>

These results are promising on the future use of SNF472 for the inhibition of cardiovascular calcification in CKD patients
Discussion:
Thank you

for your attention!