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athological calcification in soft tissues (ie, ectopic
calcification) can have severe consequences when it
occurs in vital organs such as the vascular or renal

systems. Ectopic calcification in arteries can cause throm-
bosis, arterial rupture and myocardial infarction.1–3 In the
heart, the most common valvular lesion is aortic stenosis
because of valvular calcification, and this can lead to heart
failure and death.4 In the kidneys, tissue calcification can be
associated with the formation of the calcium oxalate mono-
hydrate papillary calculi-type kidney stone,5 and in extreme
cases can cause renal failure.6

Hydroxyapatite (basic calcium phosphate crystals) is the
common mineral phase present in all tissue calcifications.
In general, the development of tissue calcification requires
a preexisting injury as an inducer (heterogeneous nucleant),
whereas further progression requires the presence of other
promoter factors (such as hypercalcemia and/or hyperphos-
phatemia) and/or a deficiency in calcification repressor
factors (crystallization inhibitors and cellular defense
mechanisms).

Several proteins modulate calcification in mammalian

tissues and their activity can either enhance or inhibit the
ability of macrophages to destroy hydroxyapatite deposits
(ie, osteoclastic activity).7–9 A common characteristic of the
proteins involved in calcification is calcium ion affinity, and
there are 2 major groups of such proteins: phosphoproteins
and carboxyproteins. Major phosphoproteins include osteo-
pontin10–13 and osteoprotegerin,14–16 and a major carboxy-
protein is matrix Gla protein17–19 or bone-Gla-protein, also
known as osteocalcin.9,20 Although these proteins have been
suggested to have some crystallization inhibitor activity, the
in vitro experiments that demonstrated such effects in-
volved the use of nonphysiological concentrations of these
proteins and of calcium and phosphate.21–23 Moreover,
these proteins have been reported to also have some calcifi-
cation promoter activity because of their heterogeneous
nucleant capacity.24–26 It appears that the major calcification
modulator role of these proteins is as regulators of osteo-
clast/osteoblast cell activity.7,8,27

Crystallization inhibitors obstruct or prevent crystal de-
velopment. In general, crystallization inhibitors bind to the
crystal nucleus or to the crystal face and hence prevent or
disturb crystal development without any cellular signaling
capacity. Pyrophosphate,28 bisphosphonates (such as etidron-
ate, alendronate and ibandronate)29–31 and phytate (myo-
inositol hexakisphosphate)32 have been shown to inhibit
crystallization in the form of vascular calcification. Etidro-
nate is used to treat osteoporosis,33 and phytate is a naturally
occurring compound that can either be ingested34,35 or
absorbed topically.36
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The present study investigated the ability of etidronate
and phytate to act as inhibitors of vascular calcification.

Methods
Animals and Diets

Male Sprague-Dawley rats (approximately 450g) were
purchased from Harlan Iberica S.L. (Barcelona, Spain).
Rats were given 7 days to acclimatize to the animal house
conditions before the experimentation. Rats were fed a
UAR-A04 diet (Panlab S.L., Barcelona, Spain; Table 1),
and were kept in Plexiglas cages (3 per cage) at a tempera-
ture of 21±1°C and relative humidity of 60±5%, under a
12h light/dark cycle.

Experimental procedures were performed according to
the Directive 86/609/EEC regarding treatment of animals
used for experimental and other scientific purposes. Per-
mission to perform these animal experiments was obtained
from the Bioethical Committee of the University.

Treatments
Placebo, Etidronate and Phytate Treatments Rats (6

per group) were administered a placebo, etidronate or
phytate subcutaneously once daily for 8 days (ie, for the
duration of the experiment). Placebo was administered at
200μl/day as sodium chloride 0.9% solution, etidronate
was administered at 0.825μmol· kg–1· day–1 in the acid
form (Fluka, Buchs, Schweiz), and phytate at 0.825μmol·
kg–1·day–1 as a sodium salt (Sigma, St Louis, MO, USA).

Calcinosis Induction The rats were treated for 4 days,
then underwent calcinosis induction, as described previous-
ly.31 Briefly, the rats were given 3 subcutaneous injections
of 500,000 IU/kg vitamin D (Fort Dodge Veterinaria S.A.,
Fort Dodge, USA) at 0, 24 and 48h. They were monitored
every 12 h and at 96 h after the 3rd injection they were
killed and their aortas and hearts removed for calcium
determination and histological analysis.

Histological Analysis
Aortas and hearts were placed in 4% buffered formalde-

hyde at pH 7 (Panreac, Barcelona, Spain) and fixed for 24h
at room temperature. Tissues were then embedded, sectioned
(4μm) and stained with hematoxylin-eosin. Tissue analysis
was performed by an experienced pathologist.

Calcium Determination
Aortas and hearts were lyophilized and weighed, and

then digested using a 1:1 HNO3:HClO4 mixture in a sand
bath until the solution was clear. For calcium determina-
tion, digested samples were diluted with distilled water to a

volume of 20ml, and the concentration of calcium was de-
termined using inductively coupled plasma atomic emission
spectrometry (Perkin-Elmer SL, Optima 5300DV spec-
trometer) and a corresponding calibration curve.

Statistical Analysis
Values are expressed as mean±SE. One-way ANOVA

was used to determine the significance of differences be-
tween groups. Student’s t-tests were used to assess differ-
ences between means. Conventional Windows software
was used for statistical computations. A p-value <0.05 was
considered to indicate a significant difference.

Results
Analysis of the aortas showed that phytate-treated rats

had lower levels of calcium in the aorta (1.9±0.5mg calci-
um/g lyophilized aorta) than did placebo-treated rats
(5.6±1.2mg calcium/g lyophilized aorta) (Fig1). Although
etidronate-treated rats (4.4±1.3 mg calcium/g lyophilized
aorta) also appeared to have lower aortic calcium levels
than placebo-treated rats, this difference was not statisti-

Table 1 Composition of the UAR-A04 Diet

Moisture (g/kg) 119
Crude protein (g/kg) 161
Crude oil (g/kg) 31
Nitrogen free extract (g/kg) 600
Crude fibre (g/kg) 3.9
Calcium (mg/kg) 8,400
Phosphorus (mg/kg) 5,700
Sodium (mg/kg) 2,500
Potassium (mg/kg) 6,400
Manganese (mg/kg) 70
Copper (mg/kg) 17
Phytate (mg/kg dry matter) 9,000

Fig1. Calcium content of the aortas of placebo-treated, etidronate-
treated and phytate-treated rats. *p<0.05 vs the placebo group.

Fig2. Calcium content of the hearts of placebo-treated, etidronate-
treated and phytate-treated rats.
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cally significant (Fig 1).
No significant differences were observed in the heart

calcium content between the phytate-treated (2.7±0.2 mg
calcium/g lyophilized heart), etidronate-treated (2.6±0.5mg
calcium/g lyophilized heart) and placebo-treated (2.6±
0.2mg calcium/g lyophilized heart) rats (Fig2).

The calcium deposits in the aorta were found to have de-
veloped predominantly in the internal tunica vessel layers

(Fig3). Heart calcium deposits developed in the walls of the
coronary vessels and in the adjacent myocardium (Fig4).
In addition, hearts showed evidence of multiple myocar-
dium necrosis and inflammation (ie, heart attack).

Discussion
The present study examined the effect of etidronate and

Fig3. Sections of aortas from placebo-treated (original magnifica-
tion ×100) (a), etidronate-treated (original magnification ×200) (b)
and phytate-treated (original magnification ×100) (c) rats. Each sec-
tion is stained with hematoxylin-eosin solution, which stains calcifi-
cation dark purple.

Fig 4. Sections of hearts from placebo-treated (original magnifica-
tion ×200) (a), etidronate-treated (original magnification ×200) (b)
and phytate-treated (original magnification ×200) (c) rats. Each
section is stained with hematoxylin-eosin solution, which stains calci-
fication dark purple.
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phytate on the calcification of vascular tissue in vitamin D-
treated rats. The results indicate that phytate treatment
reduced aortic calcification, whereas neither etidronate nor
phytate reduced calcification in the heart tissue.

The development of ectopic soft tissue calcification,
such as vascular calcification and nephrocalcinosis, can be
linked to high doses of vitamin D,31,37–39 a process that is
associated with the consequent hypercalcemia that dramati-
cally increases the supersaturation of calcium phosphate
salts in the blood. A previous study using both vitamin D
(300,000 IU/kg im) and nicotine (25 mg/kg po) reported
higher levels of calcification in the rats’ arteries and hearts
compared with the current study.32 That study used lower
levels of vitamin D, and thus involved lower levels of
calcium phosphate supersaturation than the present study.
These observations demonstrate the importance of a pre-
existing lesion (caused by nicotine in the other study) in the
development of tissue calcification.

The present study found that phytate decreased calcifica-
tion in the aorta, but had no effect in the heart. A previous
study found that phytate could inhibit vitamin D and nico-
tine-induced calcification in both the aorta and the heart of
Wistar rats.32 The difference between the findings of the 2
studies may be related to less lesions in the absence of
nicotine, and that as a consequence of the higher hydroxya-
patite supersaturation (because of increased blood calcium
and phosphorus levels), the calcium deposits may have de-
veloped directly through homogeneous nucleation and not
as a consequence of hydroxyapatite heterogeneous nuclea-
tion induced by the injured tissue. The tissue calcium
content data for the 2 studies shows that more calcium was
deposited when using vitamin D and nicotine than using
only high vitamin D doses, despite the former experiments
being half the duration of the latter. Aortic lesions were
more severe than heart lesions in the present experiments,
making the activity of crystallization inhibitors more obvi-
ous.

Although etidronate appeared to reduce the aortic calci-
um content, this effect was not statistically significant. A
previous study31 reported that the bisphosphonate iban-
dronate inhibited vitamin D-induced calcification in arte-
ries. It is pertinent to note that other studies have reported
that the activity of crystallization inhibitors decreases as
supersaturation increases.40 In the present study, the protec-
tive effect of phytate on aortic calcification was clearly
superior to that of etidronate, most likely because phytate
has a greater capacity to inhibit hydroxyapatite crystalliza-
tion than etidronate.41 The effect of phytate depends on the
level of calcium phosphate supersaturation (free calcium
and phosphate plasma concentrations) and the severity of
the injury. Under normal dietary circumstances the phytate
plasma concentration in rats of 5×10–7 mol/L is enough to
manifest important inhibitory capacity.42 However, phytate
levels must be increased in order to inhibit crystallization
under conditions of supersaturation and severe injury, such
as in the present experiments. Administration of phytate as
the natural food salt (phytin: calcium magnesium phytate)
at amounts that provide maximum absorption, equivalent to
doses that correspond to the consumption of the so-called
“Mediterranean diet” (1–2g phytate/day) were not found to
have any chronic effect.43 The chronic effects of phytate can
be attributed to the decreased availability of oligo-elements
such as zinc and iron. Obviously, administration via subcu-
taneous injection would avoid this problem. Previous work
found that phytate only manifested toxic effects at very

high doses (the LD50 value for male rats was 1.3mmol/kg
administered as sodium phytate).44

The inhibiting of crystallization appears to facilitate the
reabsorption of injured tissue by the immune system. The
greater the injury, the more difficult is reabsorption, and the
more likely is high-level calcification. Indeed, phagocytosis
of hydroxyapatite has been observed in implants,45 and
basic calcium phosphate crystals can stimulate the endo-
cytotic activity of cells.46,47 Hence, crystallization inhibitors
can prevent excessive calcium phosphate precipitation
facilitating phagocytosis and calcified injury reabsorption.
It has been demonstrated that osteoclast adhesion to hydro-
xyapatite depends on the presence of specific extracellular
adhesive proteins.7,8,27 Thus, the role of some proteins in the
calcification processes is to signal the presence of calcifica-
tion and hence modulate cell activity, rather than act as
crystallization inhibitors.

Phytate has shown a powerful capacity as an inhibitor of
hydroxyapatite crystal formation in both in vitro and in
vivo experiments.48,49 Phytate levels found in tissues reflect
dietary intake,34,35 as well as topical absorption.36 Bisphos-
phonates are commonly used for treating osteoporosis, and
have also been shown to act as crystallization inhibitors
both in vitro and in vivo.29–31 Pyrophosphate, another well-
known inhibitor of calcium salt crystallization, is also
reported to prevent vascular calcification.28 Notably, these
molecules have structural similarities (polyphosphates),
which explains their common activity. It appears that the
action of polyphosphates (of natural origin or not) could be
important in protecting against vascular calcification.
These compounds, plus the action of cell modulator pro-
teins, can combine to result in both the minimization of the
size of the calcified lesions and the reabsorption of such
lesions.

Conclusion
The present study found that phytate acted as a vascular

calcification inhibitor. Thus, the action of polyphosphates
could be important in protecting against vascular calcifica-
tions.
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